Forecasting telecommunications data with linear models

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Machine Learning Models for Housing Prices Forecasting using Registration Data

This article has been compiled to identify the best model of housing price forecasting using machine learning methods with maximum accuracy and minimum error. Five important machine learning algorithms are used to predict housing prices, including Nearest Neighbor Regression Algorithm (KNNR), Support Vector Regression Algorithm (SVR), Random Forest Regression Algorithm (RFR), Extreme Gradient B...

متن کامل

Telecommunications demand forecasting – a review

The last decade has seen rapid advances in telecommunications technology in an increasingly deregulated and competitive market place. Companies operating in these various markets have relied on demand forecasts to justify the considerable investment needed to ensure capacity availability at the right time. These new markets are typically composed of new consumers taking up a produce or service ...

متن کامل

Combining high frequency data with non-linear models for forecasting energy market volatility

The popularity of realized measures and various linear models for volatility forecasting has been the focus of attention in the literature addressing energy markets’ price variability over the past decade. However, there are no studies to help practitioners achieve optimal forecasting accuracy by guiding them to a specific estimator and model. This paper contributes to this literature in two wa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Telecommunications Policy

سال: 2007

ISSN: 0308-5961

DOI: 10.1016/j.telpol.2006.11.004